Structured Dimensionality Reduction for Additive Model Regression
نویسندگان
چکیده
منابع مشابه
Spectral Regression for Dimensionality Reduction∗
Spectral methods have recently emerged as a powerful tool for dimensionality reduction and manifold learning. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal low dimensional structure in high dimensional data. The most popular manifold learning algorithms include Locally Linear Embedding, Isomap, and Laplacian Eigenmap...
متن کاملNonlinear Dimensionality Reduction for Regression
The task of dimensionality reduction for regression (DRR) is to find a low dimensional representation z ∈ R of the input covariates x ∈ R, with q p, for regressing the output y ∈ R. DRR can be beneficial for visualization of high dimensional data, efficient regressor design with a reduced input dimension, but also when eliminating noise in data x through uncovering the essential information z f...
متن کاملMultilevel structured additive regression
Models with structured additive predictor provide a very broad and rich framework for complex regression modeling. They can deal simultaneously with nonlinear covariate effects and time trends, unitor cluster-specific heterogeneity, spatial heterogeneity and complex interactions between covariates of different type. In this paper, we propose a hierarchical or multilevel version of regression mo...
متن کاملDimensionality Reduction for Sparse and Structured Matrices
Dimensionality reduction has become a critical tool for quickly solving massive matrix problems. Especially in modern data analysis and machine learning applications, an overabundance of data features or examples can make it impossible to apply standard algorithms efficiently. To address this issue, it is often possible to distill data to a much smaller set of informative features or examples, ...
متن کاملBayesian structured additive distributional regression
In this paper, we propose a generic Bayesian framework for inference in distributional regression models in which each parameter of a potentially complex response distribution and not only the mean is related to a structured additive predictor. The latter is composed additively of a variety of different functional effect types such as nonlinear effects, spatial effects, random coefficients, int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Knowledge and Data Engineering
سال: 2016
ISSN: 1041-4347
DOI: 10.1109/tkde.2016.2525996